Decompilation aims to transform a low-level program language (LPL) (eg., binary file) into its functionally-equivalent high-level program language (HPL) (e.g., C/C++). It is a core technology in software security, especially in vulnerability discovery and malware analysis. In recent years, with the successful application of neural machine translation (NMT) models in natural language processing (NLP), researchers have tried to build neural decompilers by borrowing the idea of NMT. They formulate the decompilation process as a translation problem between LPL and HPL, aiming to reduce the human cost required to develop decompilation tools and improve their generalizability. However, state-of-the-art learning-based decompilers do not cope well with compiler-optimized binaries. Since real-world binaries are mostly compiler-optimized, decompilers that do not consider optimized binaries have limited practical significance. In this paper, we propose a novel learning-based approach named NeurDP, that targets compiler-optimized binaries. NeurDP uses a graph neural network (GNN) model to convert LPL to an intermediate representation (IR), which bridges the gap between source code and optimized binary. We also design an Optimized Translation Unit (OTU) to split functions into smaller code fragments for better translation performance. Evaluation results on datasets containing various types of statements show that NeurDP can decompile optimized binaries with 45.21% higher accuracy than state-of-the-art neural decompilation frameworks.
translated by 谷歌翻译
Our situated environment is full of uncertainty and highly dynamic, thus hindering the widespread adoption of machine-led Intelligent Decision-Making (IDM) in real world scenarios. This means IDM should have the capability of continuously learning new skills and efficiently generalizing across wider applications. IDM benefits from any new approaches and theoretical breakthroughs that exhibit Artificial General Intelligence (AGI) breaking the barriers between tasks and applications. Recent research has well-examined neural architecture, Transformer, as a backbone foundation model and its generalization to various tasks, including computer vision, natural language processing, and reinforcement learning. We therefore argue that a foundation decision model (FDM) can be established by formulating various decision-making tasks as a sequence decoding task using the Transformer architecture; this would be a promising solution to advance the applications of IDM in more complex real world tasks. In this paper, we elaborate on how a foundation decision model improves the efficiency and generalization of IDM. We also discuss potential applications of a FDM in multi-agent game AI, production scheduling, and robotics tasks. Finally, through a case study, we demonstrate our realization of the FDM, DigitalBrain (DB1) with 1.2 billion parameters, which achieves human-level performance over 453 tasks, including text generation, images caption, video games playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 would be a baby step towards more autonomous and efficient real world IDM applications.
translated by 谷歌翻译
Surgery is the only viable treatment for cataract patients with visual acuity (VA) impairment. Clinically, to assess the necessity of cataract surgery, accurately predicting postoperative VA before surgery by analyzing multi-view optical coherence tomography (OCT) images is crucially needed. Unfortunately, due to complicated fundus conditions, determining postoperative VA remains difficult for medical experts. Deep learning methods for this problem were developed in recent years. Although effective, these methods still face several issues, such as not efficiently exploring potential relations between multi-view OCT images, neglecting the key role of clinical prior knowledge (e.g., preoperative VA value), and using only regression-based metrics which are lacking reference. In this paper, we propose a novel Cross-token Transformer Network (CTT-Net) for postoperative VA prediction by analyzing both the multi-view OCT images and preoperative VA. To effectively fuse multi-view features of OCT images, we develop cross-token attention that could restrict redundant/unnecessary attention flow. Further, we utilize the preoperative VA value to provide more information for postoperative VA prediction and facilitate fusion between views. Moreover, we design an auxiliary classification loss to improve model performance and assess VA recovery more sufficiently, avoiding the limitation by only using the regression metrics. To evaluate CTT-Net, we build a multi-view OCT image dataset collected from our collaborative hospital. A set of extensive experiments validate the effectiveness of our model compared to existing methods in various metrics. Code is available at: https://github.com/wjh892521292/Cataract OCT.
translated by 谷歌翻译
Deep neural networks (DNNs) have rapidly become a \textit{de facto} choice for medical image understanding tasks. However, DNNs are notoriously fragile to the class imbalance in image classification. We further point out that such imbalance fragility can be amplified when it comes to more sophisticated tasks such as pathology localization, as imbalances in such problems can have highly complex and often implicit forms of presence. For example, different pathology can have different sizes or colors (w.r.t.the background), different underlying demographic distributions, and in general different difficulty levels to recognize, even in a meticulously curated balanced distribution of training data. In this paper, we propose to use pruning to automatically and adaptively identify \textit{hard-to-learn} (HTL) training samples, and improve pathology localization by attending them explicitly, during training in \textit{supervised, semi-supervised, and weakly-supervised} settings. Our main inspiration is drawn from the recent finding that deep classification models have difficult-to-memorize samples and those may be effectively exposed through network pruning \cite{hooker2019compressed} - and we extend such observation beyond classification for the first time. We also present an interesting demographic analysis which illustrates HTLs ability to capture complex demographic imbalances. Our extensive experiments on the Skin Lesion Localization task in multiple training settings by paying additional attention to HTLs show significant improvement of localization performance by $\sim$2-3\%.
translated by 谷歌翻译
In recent years, semi-supervised graph learning with data augmentation (DA) is currently the most commonly used and best-performing method to enhance model robustness in sparse scenarios with few labeled samples. Differing from homogeneous graph, DA in heterogeneous graph has greater challenges: heterogeneity of information requires DA strategies to effectively handle heterogeneous relations, which considers the information contribution of different types of neighbors and edges to the target nodes. Furthermore, over-squashing of information is caused by the negative curvature that formed by the non-uniformity distribution and strong clustering in complex graph. To address these challenges, this paper presents a novel method named Semi-Supervised Heterogeneous Graph Learning with Multi-level Data Augmentation (HG-MDA). For the problem of heterogeneity of information in DA, node and topology augmentation strategies are proposed for the characteristics of heterogeneous graph. And meta-relation-based attention is applied as one of the indexes for selecting augmented nodes and edges. For the problem of over-squashing of information, triangle based edge adding and removing are designed to alleviate the negative curvature and bring the gain of topology. Finally, the loss function consists of the cross-entropy loss for labeled data and the consistency regularization for unlabeled data. In order to effectively fuse the prediction results of various DA strategies, the sharpening is used. Existing experiments on public datasets, i.e., ACM, DBLP, OGB, and industry dataset MB show that HG-MDA outperforms current SOTA models. Additionly, HG-MDA is applied to user identification in internet finance scenarios, helping the business to add 30% key users, and increase loans and balances by 3.6%, 11.1%, and 9.8%.
translated by 谷歌翻译
The recent neural implicit representation-based methods have greatly advanced the state of the art for solving the long-standing and challenging problem of reconstructing a discrete surface from a sparse point cloud. These methods generally learn either a binary occupancy or signed/unsigned distance field (SDF/UDF) as surface representation. However, all the existing SDF/UDF-based methods use neural networks to implicitly regress the distance in a purely data-driven manner, thus limiting the accuracy and generalizability to some extent. In contrast, we propose the first geometry-guided method for UDF and its gradient estimation that explicitly formulates the unsigned distance of a query point as the learnable affine averaging of its distances to the tangent planes of neighbouring points. Besides, we model the local geometric structure of the input point clouds by explicitly learning a quadratic polynomial for each point. This not only facilitates upsampling the input sparse point cloud but also naturally induces unoriented normal, which further augments UDF estimation. Finally, to extract triangle meshes from the predicted UDF we propose a customized edge-based marching cube module. We conduct extensive experiments and ablation studies to demonstrate the significant advantages of our method over state-of-the-art methods in terms of reconstruction accuracy, efficiency, and generalizability. The source code is publicly available at https://github.com/rsy6318/GeoUDF.
translated by 谷歌翻译
Deep convolutional neural networks have achieved great progress in image denoising tasks. However, their complicated architectures and heavy computational cost hinder their deployments on a mobile device. Some recent efforts in designing lightweight denoising networks focus on reducing either FLOPs (floating-point operations) or the number of parameters. However, these metrics are not directly correlated with the on-device latency. By performing extensive analysis and experiments, we identify the network architectures that can fully utilize powerful neural processing units (NPUs) and thus enjoy both low latency and excellent denoising performance. To this end, we propose a mobile-friendly denoising network, namely MFDNet. The experiments show that MFDNet achieves state-of-the-art performance on real-world denoising benchmarks SIDD and DND under real-time latency on mobile devices. The code and pre-trained models will be released.
translated by 谷歌翻译
Open Relation Extraction (OpenRE) aims to discover novel relations from open domains. Previous OpenRE methods mainly suffer from two problems: (1) Insufficient capacity to discriminate between known and novel relations. When extending conventional test settings to a more general setting where test data might also come from seen classes, existing approaches have a significant performance decline. (2) Secondary labeling must be performed before practical application. Existing methods cannot label human-readable and meaningful types for novel relations, which is urgently required by the downstream tasks. To address these issues, we propose the Active Relation Discovery (ARD) framework, which utilizes relational outlier detection for discriminating known and novel relations and involves active learning for labeling novel relations. Extensive experiments on three real-world datasets show that ARD significantly outperforms previous state-of-the-art methods on both conventional and our proposed general OpenRE settings. The source code and datasets will be available for reproducibility.
translated by 谷歌翻译
Positioning with one inertial measurement unit and one ranging sensor is commonly thought to be feasible only when trajectories are in certain patterns ensuring observability. For this reason, to pursue observable patterns, it is required either exciting the trajectory or searching key nodes in a long interval, which is commonly highly nonlinear and may also lack resilience. Therefore, such a positioning approach is still not widely accepted in real-world applications. To address this issue, this work first investigates the dissipative nature of flying robots considering aerial drag effects and re-formulates the corresponding positioning problem, which guarantees observability almost surely. On this basis, a dimension-reduced wriggling estimator is proposed accordingly. This estimator slides the estimation horizon in a stepping manner, and output matrices can be approximately evaluated based on the historical estimation sequence. The computational complexity is then further reduced via a dimension-reduction approach using polynomial fittings. In this way, the states of robots can be estimated via linear programming in a sufficiently long interval, and the degree of observability is thereby further enhanced because an adequate redundancy of measurements is available for each estimation. Subsequently, the estimator's convergence and numerical stability are proven theoretically. Finally, both indoor and outdoor experiments verify that the proposed estimator can achieve decimeter-level precision at hundreds of hertz per second, and it is resilient to sensors' failures. Hopefully, this study can provide a new practical approach for self-localization as well as relative positioning of cooperative agents with low-cost and lightweight sensors.
translated by 谷歌翻译
A diffusion auction is a market to sell commodities over a social network, where the challenge is to incentivize existing buyers to invite their neighbors in the network to join the market. Existing mechanisms have been designed to solve the challenge in various settings, aiming at desirable properties such as non-deficiency, incentive compatibility and social welfare maximization. Since the mechanisms are employed in dynamic networks with ever-changing structures, buyers could easily generate fake nodes in the network to manipulate the mechanisms for their own benefits, which is commonly known as the Sybil attack. We observe that strategic agents may gain an unfair advantage in existing mechanisms through such attacks. To resist this potential attack, we propose two diffusion auction mechanisms, the Sybil tax mechanism (STM) and the Sybil cluster mechanism (SCM), to achieve both Sybil-proofness and incentive compatibility in the single-item setting. Our proposal provides the first mechanisms to protect the interests of buyers against Sybil attacks with a mild sacrifice of social welfare and revenue.
translated by 谷歌翻译